
 1 / 20

Developments in the MCPL project

T. Kittelmann
ESS Detector Group

Acknowledgements:
 E. Klinkby1 E.B. Knudsen1

 P. Willendrup12 K. Kanaki2
 D. Di Julio2 X.-X. Cai12→3

 1: DTU 2: ESS 3: CSNS

Innovative Simulation Tools, Shielding and Instrumentation 2019
June 29, 2019

Saint Petersburg, Russia

 2 / 20

T. Kittelmann ISTSI2019

Overview

● Recap of the MCPL project, capabilities, tools

– Focus mostly on more recently added features
marking those added post-Coimbra or after
the MCPL paper was published as

● Discuss future plans, ideas, wishes

NEW!

 3 / 20

T. Kittelmann ISTSI2019

Recap: Key MCPL features
MCPL: Monte Carlo Particle Lists

● It is a simple binary fle-format. Each fle contains a list of MC
particles with enough info to seed simulations.

● MCPL fles can contain meta-data. This makes it possible to tell what
data is in a fle, where it came from, how it should be interpreted.

● The format is fexible: can contain a lot of information if needed, or
can contain only minimal information if small fle-size is important.
Can be gzip’ed.

● It is easy to make code dealing with MCPL, so it is easy to make
plugins & converters for the various Monte Carlo frameworks.

 End-users will simply use those converters.→

● MCPL comes with tools and APIs, such as for inspecting or editing
contents.

● Well-defned versioned format, focus on backwards compatibility.

 4 / 20

T. Kittelmann ISTSI2019

… focus on availability:

… and documentation:
Download, follow, and
report issues @GitHub

● Extremely liberal license (CC0) encourage bundling.
● API for C/C++/Python code (all versions).
● “fat” single-fle versions of all C code (even embedding zlib)
● Can “pip install” Python API+pymcpltool.

● Detailed paper for release 1.1.0:
(DOI 10.1016/j.cpc.2017.04.012)

● Online docs with recipes
(https://mctools.github.io/mcpl/)

https://mctools.github.io/mcpl/

 5 / 20

T. Kittelmann ISTSI2019

Codes with MCPL support

Available Missing

h

MCNP5

=

NEW!

NEW!

NEW!

2016
2016

2017

2016

2019

2017

2019
2016

2018

Certainly have critical mass by now! :-)

 6 / 20

T. Kittelmann ISTSI2019

What form does MCPL support take?
● Built-in support in instrument simulation codes:

– McStas, McXtrace, VITESS, RESTRAX/SIMRES

– Batteries included great for users!→

● C++ helper classes for particle capture or event seeding available for Geant4
(in line with how most Geant4 users work)

● MCNP support relies on inbuilt ability to dump particles to/seed from “SSW”
fles.

– We provide ssw2mcpl and mcpl2ssw tools.
– Somewhat high maintenance burden due to plethora of MCNP favours +

closed nature of programme.
– Complication is that particles need “surface ID”. Can be provided as

MCPL userfags or via global setting.
– mcpl2ssw must be provided with sample SSW fles from target setup.

● PHITS support: Like MCNP, but simpler. More details later.

NEW!
NEW!

NEW!

Most work done by
developers of these
applications!

Me+E. Klinkby

Me+D. Di Julio

Me

 7 / 20

T. Kittelmann ISTSI2019

Data in MCPL fles
All generic parameters always
Available to reading code, no
matter source of MCPL file.

This implies from 28 to 96 bytes/particle. Already good, but
most files are gzip’ed (by MCPL or user) and consume less.
(NB: MCPL code can read .mcpl.gz files directly)

Flexibility in how this
is actually stored!

 8 / 20

T. Kittelmann ISTSI2019

MCNP/SSW files

Novel packing of direction vectors: Optimal
storage size without precision loss!

Spherical coords

Ideal (unpacked)

MCPL (2016)

MCPL (2017+)

 9 / 20

T. Kittelmann ISTSI2019

Example fle
Inspected with (py)mcpltool

Opened MCPL file recordfwd.mcpl.gz:

 Basic info
 Format : MCPL-3
 No. of particles : 542199
 Header storage : 826 bytes
 Data storage : 17350368 bytes

 Custom meta data
 Source : "Geant4"
 Number of comments : 8
 -> comment 0 : "Created with the Geant4 MCPLWriter in the ESS/dgcode framework"
 -> comment 1 : "MPCLWriter volumes considered : ['RecordFwd']"
 -> comment 2 : "MPCLWriter steps considered : <at-volume-exit>"
 -> comment 3 : "MPCLWriter write filter : <unfiltered>"
 -> comment 4 : "MPCLWriter user flags : <disabled>"
 -> comment 5 : "MPCLWriter track kill strategy : <none>"
 -> comment 6 : "ESS/dgcode geometry module : G4StdGeometries/GeoSlab"
 -> comment 7 : "ESS/dgcode generator module : G4StdGenerators/SimpleGen"
 Number of blobs : 2
 -> 74 bytes of data with key "ESS/dgcode_geopars"
 -> 231 bytes of data with key "ESS/dgcode_genpars"

 Particle data format
 User flags : no
 Polarisation info : no
 Fixed part. type : no
 Fixed part. weight : yes (weight 1)
 FP precision : single
 Endianness : little
 Storage : 32 bytes/particle

index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]
 0 22 1.2238 -13.327 3.5344 40 -0.43426 -0.036564 0.90005 0.14113
 1 22 0.12059 -15.976 14.788 40 -0.63971 0.082934 0.76413 0.14113
 2 22 0.10212 -22.452 -7.1864 40 -0.58735 -0.35527 0.72718 0.14113
 3 22 7.695 12.547 36.899 40 0.19775 0.47066 0.85987 0.20354
 4 2112 2.5e-08 0 0 40 0 0 1 0.1829
 5 22 0.077251 -33.171 15.428 40 -0.81854 0.33885 0.46387 0.0047377
 6 22 0.48009 25.837 3.7975 40 0.088666 0.38747 0.91761 0.0047367
 7 22 2.1207 -11.886 10.765 40 -0.19866 -0.075343 0.97717 0.12339
 8 2112 2.5e-08 0 0 40 0 0 1 0.1829
 9 2112 2.5e-08 0 0 40 0 0 1 0.1829

PDG codes: 2112 = neutron, 22 = gamma
More at http://pdg.lbl.gov/2015/reviews/rpp2015-rev-monte-carlo-numbering.pdf

Columns of particle data
In this file: No userflags or polarisation

Custom meta-data
●This file is from ESS-DG Geant4
● Comments reminding us of setup
used to create file

● Binary “blobs” keep more complete
configuration details, here ESS-DG
geo/gen parameters. Could be
McStas instrument file, input deck
from MCNP/PHITS, etc.

NB: compresses to
19.2bytes/particle

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-monte-carlo-numbering.pdf

 10 / 20

T. Kittelmann ISTSI2019

C API
● Stable C API for reading/creating/editing MCPL
● Use to create most application-specifc hooks
● Some users use it to analyse or tailor MCPL fles

Despite being C, interface is
“object oriented” and hopefully easy.

C not C++ to support more apps
(C is “lingua franca” of SW)

 11 / 20

T. Kittelmann ISTSI2019

Custom fltering via C API
Filtering files with custom code in
very few lines: mcpl_transfer_metadata does all the

hard work of configuring output file

mcpl_transfer_last_read_particle from
MCPL v1.3.0 prevents lossy unpacking+repacking
of data. If need to edit particles fields, replace with:
 mcpl_add_particle(fo,prtcl);

NEW!

 12 / 20

T. Kittelmann ISTSI2019

Python API (from MCPL v1.2.0)
To enable MCPL Python module, download mcpl.py or do
 python -mpip install mcpl
(this incidently also installs the pymcpltool…)

Accessing particles is
straight-forward

Can also process blocks of
N particles at a time, for
increased efficency.

Technical details:
- Pure Python, does not use mcpl.c
- Usage of Numpy for efficiency.
- Works with both Python 2 and 3.
- Readonly access for now.

Can of course access
meta data as well.

Numpy arrays of length N

NEW!

 13 / 20

T. Kittelmann ISTSI2019

Command-line tools
● mcpltool and pymcpltool , both can:

– Inspect fles, extract binary blobs to stdout
– Convert MCPL to (inefcient) ASCII fles for interoperability with software

lacking MCPL support.
– Show all options with --help

● The mcpltool:
– Compiled executable with C compiler (from “fat” or proper linked code)
– Can edit fles:

● Merge fles
● Extract subset of particles to smaller fle (select by type or fle idx)
● Repair fles leftover by crashed jobs

● The pymcpltool :
– Built upon Python API (fast because of Numpy)
– Download 1 fle + run, or “pip install mcpl”
– Can provide statistics (see next slide)

NEW!

NEW!

 14 / 20

T. Kittelmann ISTSI2019

Merging fles

● Ability to merge fles is crucial for collecting output of
concurrent simulations.

– But other use-cases exists for combining fles.
● Done via “mcpltool --merge” or “mcpl_merge_fles“ in C API.

● As a quality concern, MCPL is conservative about not
producing fles with misleading meta-data.

● All meta-data must be identical and will be transferred to the
newly created fle.

● On several occasions this restriction has caused problems...

 15 / 20

T. Kittelmann ISTSI2019

New “mcpltool --forcemerge” in release 1.3.0

● Can always merge, but will throw away all meta-data.

– Should be considered as a last resort only!
● Particle data format options

adapted to accommodate
particles from all input fles.

– Double-prec, polarisation,
fxed pdg/weight on demand.

– Discard userfags by default
[override with --keepuserfags]

● Loss-less particle data transfer
whenever possible.

Opened MCPL file forcemerged.mcpl:

 Basic info
 Format : MCPL-3
 No. of particles : 1170823
 Header storage : 92 bytes
 Data storage : 79615964 bytes

 Custom meta data
 Source : "mcpl_forcemerge_files (from MCPL v1.3.0)"
 Number of comments : 0
 Number of blobs : 0

 Particle data format
 User flags : no
 Polarisation info : no
 Fixed part. type : no
 Fixed part. weight : no
 FP precision : double
 Endianness : little
 Storage : 68 bytes/particle

index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms] weight
 0 22 0.040287 59.118 67.828 250 -0.81621 -0.18225 -0.54826 0.00042363 1
 1 22 0.048627 19.774 -98.025 197.92 -0.10346 0.99045 -0.091101 0.0001792 1
 2 22 0.044083 -81.242 58.308 71.342 0.37504 -0.92546 -0.053641 0.00018065 1
 3 22 0.042855 70.895 -70.526 8.9938 -0.73866 0.67296 -0.038795 0.00030956 1
 4 22 0.05 -68.413 -72.936 160.88 0.46004 0.88765 0.020895 0.00025685 1
 5 22 0.049592 -95.998 -28.005 223.32 0.61319 0.71842 -0.32845 0.00014254 1
 6 22 0.042521 84.72 -7.3153 250 0.25865 -0.91372 -0.31341 0.0008938 1
 7 22 0.04898 -52.851 -84.892 26.98 0.97167 0.23149 -0.047646 0.00023474 1
 8 22 0.045358 66.239 -74.916 127.78 -0.42641 0.85539 -0.29409 0.0002622 1
 9 22 0.04368 -98.073 19.537 219.24 0.20755 -0.81319 -0.54374 0.00030561 1

NEW!

 16 / 20

T. Kittelmann ISTSI2019

--
nparticles : 1172044
sum(weights) : 1.17206e+06
--
 : mean rms min max
--
ekin [MeV] : 0.68247 14.1939 9.7657e-11 1889.44
x [cm] : 0.0872454 52.1543 -100 100
y [cm] : 0.0192493 52.1484 -100 100
z [cm] : 98.2832 78.6334 -5.55112e-17 250
ux : -0.000322662 0.558483 -1 0.999999
uy : 6.59925e-05 0.558487 -0.999998 1
uz : 0.236649 0.56585 -1 1
time [ms] : 24658 4.3971e+06 1.462e-06 2.83953e+09
weight : 1.00001 0.00483571 0.654834 2.44895
polx : 0.000415962 0.0178829 0 0.769231
poly : 0.000166385 0.00715315 0 0.307692
polz : 0.000499154 0.0214595 0 0.923077
--
pdgcode : 22 (gamma) 848745 (72.41%)
 2112 (n) 318868 (27.21%)
 11 (e-) 3922 (0.33%)
 -11 (e+) 431 (0.04%)
 2212 (p) 80 (0.01%)
 211 (pi+) 5 (0.00%)
 -12 (nu_e-bar) 4 (0.00%)
 1000010030 (T) 2 (0.00%)
 14 (nu_mu) 2 (0.00%)
 1000020040 (alpha) 1 (0.00%)
 -211 (pi-) 1 (0.00%)
 [values] [weighted counts]
--
userflags : 0 (0x00000000) 1.17206e+06 (100.00%)
 [values] [weighted counts]
--

File statistics with pymcpltool
pymcpltool --stats <filename>

pymcpltool --stats --gui <filename>

pymcpltool --stats --pdf <filename>

NEW!

 17 / 20

T. Kittelmann ISTSI2019

PHITS support (new in release 1.3.0)

● Use PHITS capability to dump particles in certain tallies to
so-called “dump fles”, and to seed runs from such fles.

● Dump fles can be converted to/from MCPL format via
two new tools: phits2mcpl and mcpl2phits

– Tools shipped with MCPL, but quick access by
downloading “fat” versions from MCPL website.

● This all resembles how we support MCNP

– Diference is that PHITS dump fles do not have
(complicated) header sections simpler support but →
no self-describing meta-data available.

NEW!

Added in close collaboration with Douglas Di Julio, ESS.

 18 / 20

T. Kittelmann ISTSI2019

PHITS cfg for dump fle output
● Can be output from t-cross, t-product and t-time tallies:

● Contents are fexible, but we support only the variant above, and
the following with 10-variables which excludes polarisation info:

● PHITS dump fles have no header, but phits2mcpl can detect
number of variables and thus distinguish the two above variants
(but don’t swap/replace individual variables!)

[t-cross]
 part = all
 reg = 1
 r-from r-to area
 1 2 1.0
 dump = 13
 1 2 3 4 5 6 7 8 9 10 14 15 16
 file = mydump

 dump = 10
 1 2 3 4 5 6 7 8 9 10

Tally-specific stuff

Dump-file cfg with 13 variables
(1=type, 2=x, 8=ekin, etc.)

NEW!

 19 / 20

T. Kittelmann ISTSI2019

Seed PHITS from dump fles

[parameters]
 maxcas = 123456 # nparticles per batch
 maxbch = 1 # number of batches
 ...

[source]
 s-type = 17
 file = phits.dmp
 dump = 13
 1 2 3 4 5 6 7 8 9 10 14 15 16

● Input cfg must use s-type=17 and appropriate dump fle cfg:

● mcpl2phits outputs the 13-variable variant PHITS dump fles by
default, but the --nopol fag can be used to produce the 10-
variable variant without polarisation info.

● For now recommend setting maxbch=1 and maxcas to the
number of particles in the fle. Will revisit this over the coming
months, since >1 batch might be desirable.

NEW!

 20 / 20

T. Kittelmann ISTSI2019

Outlook / wishful thinking
● Github issue 6: Mergeable statistics? E.g. “NEvtsSimulated” which

would be added when fles are merged. Would allow easier book-keeping.

● Github issue 44: In ESS Detector Group we have internal C++-based
enhanced tools for working with MCPL fles, based on our ExpressionParser
and histogram classes:

– It would be great to export these tools to the greater community, but
needs signifcant work to disentangle and prepare.

● IMHO if the Python API would not be read-only, we could easily build and
easily distribute a lot of great new tools (e.g. GUI for editing). It would also be
easy for people to compose/flter their own MCPL fles from cmdline or code.

mcplfilterfile in.mcpl.gz out.mcpl.gz “time<2ms and is_neutron and neutron_wl>2.2Aa”

mcplbrowse in.mcpl.gz where “pdgcode!=11 and ekin<10keV”

=

Funding

missing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

